Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao, ${ }^{a}$ Li-Hua Huo ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.143$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethylenediammonium bis(3-carboxy-4-hydroxybenzenesulfonate) tetrahydrate

In the title compound, $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{~S}^{-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the cation and anion interact with the water molecules to form a three-dimensional network. In the anion, the negative charge resides on the sulfonate group. The dication lies on a special position of site symmetry $\overline{1}$.

Comment

The guanidinium salt of 3-carboxy-4-hydroxybenzenesulfonic acid features an anion whose negative charge resides on the sulfonate group, the anion retaining the acid H atoms of the carboxyl and hydroxy groups. The three amino groups engage in extensive hydrogen-bonding interactions with the anion (Zhang et al., 2004). In the title ethylenediammonium analogue, (I), because the dication lies on a special position of $\overline{1}$ site symmetry, there are only three donor sites on the cation so the hydrogen-bonding interactions with the anion appear to be satisfied only with the inclusion of water molecules in the crystal structure (Fig. 1). Compound (I) crystallizes with four molecules of water for each dication. The three-dimensional network structure is stabilized by extensive hydrogen bonding (Table 2).

Experimental

Copper diacetate hydrate ($0.40 \mathrm{~g}, 2 \mathrm{mmol}$) and ethylenediamine ($0.17 \mathrm{~g}, 3 \mathrm{mmol}$) were added to an aqueous solution of the sodium salt of 3-carboxy-4-hydroxybenzenesulfonic acid ($0.72 \mathrm{~g}, 3 \mathrm{mmol}$). The solution was allowed to evaporate at room temperature and colorless crystals separated from the solution after a week. The compound was not a metal complex. Analysis calculated (found, \%): C 33.80 (33.96), H 4.96 (4.89), N 4.93 (4.97).

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=568.52$	$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.111(1) \AA$	Cell parameters from 5480
$b=7.140(1) \AA$	reflections
$c=12.765(3) \AA$	$\theta=3.0-27.5^{\circ}$
$\alpha=87.77(3)^{\circ}$	$\mu=0.30 \mathrm{~mm}^{\circ}$
$\beta=75.86(3)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=77.36(3)^{\circ}$	Prism, colorless
$V=613.1(2) \AA^{\circ}$	$0.39 \times 0.26 \times 0.19 \mathrm{~mm}$

Received 22 October 2004 Accepted 26 October 2004 Online 6 November 2004

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.841, T_{\text {max }}=0.946$
6115 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.143$
$S=1.10$
2793 reflections
199 parameters
H atoms treated by a mixture of independent and constrained refinement

2793 independent reflections 2394 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0958 P)^{2}\right. \\
& \quad+0.0909 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.47 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

S1-O1	1.444 (2)	C1-C2	1.379 (2)
S1-O2	1.451 (2)	C1-C6	1.392 (3)
S1-O3	1.447 (2)	C2-C3	1.392 (2)
S1-C1	1.763 (2)	C3-C4	1.399 (3)
O4-C7	1.218 (2)	C3-C7	1.476 (2)
O5-C7	1.310 (2)	C4-C5	1.397 (3)
O6-C4	1.342 (3)	C5-C6	1.375 (3)
N1-C8	1.475 (2)	C8-C8 ${ }^{\text {i }}$	1.514 (4)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	113.4 (1)	C2-C3-C7	120.5 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	110.3 (1)	C4-C3-C7	120.0 (2)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	107.5 (1)	O6-C4-C3	122.3 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	111.1 (1)	O6-C4-C5	118.0 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	106.4 (1)	C3-C4-C5	119.8 (2)
O3-S1-C1	107.9 (1)	C4-C5-C6	120.0 (2)
C2-C1-C6	120.0 (2)	C1-C6-C5	120.4 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	119.6 (1)	O4-C7-O5	123.4 (2)
C6-C1-S1	120.4 (1)	O4-C7-C3	122.6 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.3 (2)	O5-C7-C3	114.0 (2)
C2-C3-C4	119.5 (2)	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	109.9 (2)

Symmetry code: (i) $2-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1n1 \cdots O 1	0.85 (3)	1.93 (3)	2.758 (3)	163 (3)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{n} 3 \cdots \mathrm{O} 3^{\text {ii }}$	0.86 (3)	1.94 (3)	2.784 (3)	167 (2)
$\mathrm{N} 1-\mathrm{H} 1 n 2 \cdots \mathrm{O} 1 w$	0.85 (3)	2.09 (3)	2.908 (3)	161 (3)
$\mathrm{O} 5-\mathrm{H} 5 o \cdots \mathrm{O} 1 w^{\text {iii }}$	0.86 (2)	1.81 (3)	2.656 (2)	170 (3)
O6-H6o . ${ }^{\text {O } 4}$	0.85 (3)	1.82 (2)	2.598 (2)	151 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2 w^{\text {iv }}$	0.84 (3)	1.85 (3)	2.658 (3)	163 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O}{ }^{\text {v }}$	0.85 (3)	2.00 (3)	2.848 (3)	175 (3)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 2$	0.84 (3)	2.10 (3)	2.863 (3)	150 (5)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 3{ }^{\text {vi }}$	0.85 (2)	2.40 (2)	3.188 (3)	156 (4)
Symmetry codes: (ii) $1+x, y-1, z ;(\text { vi) } 1-$	$\begin{aligned} & -1, z \\ & y, 1-z . \end{aligned}$	$1-x, 1$	$-z ; \quad \text { (iv) }$	$x, y, z ; \quad \text { (v) }$

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

The $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances were restrained to 0.85 (1) \AA and the $\mathrm{H} \cdots \mathrm{H}$ distance to 1.35 (1) \AA for the acid and ammonium groups. The aliphatic, aromatic and methyl H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and $\mathrm{C}-\mathrm{H}=0.97 \AA$ (aliphatic), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}=0.96 \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ (methyl)], and were included in the refinement in the riding-model approximation.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X.-L., Chen, X.-M. \& Ng, S. W. (2004). Acta Cryst. E60, o453-o454.

